Do you have any questions?
Comparison of Thermal Spray Process Characteristics
Property | Flame Powder Spray | HVOF | Arc | Plasma (APS) | Cold spray | Detonation | |
---|---|---|---|---|---|---|---|
Gase | Acetylene, propane, H₂, ethene | Propane, H₂, ethene | Air, N₂, Ar | Ar, N₂, H₂, He | Ar, He, N₂ | Acetylene, O₂, N₂ | |
Coating Materials | All | Metals Carbides | Metals | Oxides Metals | Ductile metals | All | |
Flame Temperature | [°C] | 3160 | 2950 | 4000 | < 20000 | < 300 | 3160 |
Deposition Rate | [kg/h] | 3 – 6 | 2 – 8 | 8 – 20 | 4 – 8 | 2 – 15 | 3 – 6 |
Particle velocity | [m/s] | < 50 | < 700 | ca. 150 | < 450 | < 1200 | < 1000 |
Porosity | [%] | 3 – 10 | < 2 | 3 – 10 | 2 – 5 | < 1 | < 1 |
Adhesive tensile strength | [MPa] | 14 – 21 | 48 – 62 | 28 – 41 | 21 – 34 | 50 – 70 | 70 – 100 |
Coating thickness range | [mm] | 0.05 – 2.0 | 0.05 – 2.5 | 0.1 – 2.5 | 0.4 – 2.5 | 0,05 – 10 | 0.05 – 0.5 |
Hardness | [HRC] | < 35 | < 45 | < 40 | < 40 | < 70 | < 70 |
Detonation Spraying
Advantages
Materials processed
- Metals: copper, nickel, molybdenum, iron, others
- Alloys: steels, nichrome, bronze, others
- Oxides: aluminum oxide, chromium oxide, zirconium oxide, titanium oxide, others
- Cermets: metal–ceramic composites with tungsten, chromium, and titanium carbides
The system coats complex geometries, including non‑standard shapes. The process is fully computer‑controlled for high process reliability and quality control.
Process cycle
– Gasgemisch wird ins Geschoß zugeführt (1,2,3)
– Beschichtungsmaterial (Pulver) wird ins Rohr eingebracht (4)
– Gasgemisch wird gezündet (5)
– Explosionsenergie schleudert das Gas Pulver Gemisch mit hoher Geschwindigkeit aus dem Rohr (6)
– Die Pulverteilchen werden beim Aufprall auf das Werkstück mit der Materialoberfläche verschmolzen und es entsteht eine Beschichtung mit einer Stärke bis 10 Mikron (7)
– Beschichtungsdicke wird je nach Anzahl der Schüsse entsprechend erhöht.
Typical applications
- Aerospace
- Medical devices
- Mechanical engineering



Atmospheric Plasma Spraying (APS)
We apply APS coatings to production parts.
How it works
- A non-transferred DC arc in a water-cooled cathode–anode torch generates the plasma jet; process gases form the plume.
- Powder feedstock is injected, melted in the jet, and propelled to the substrate to build dense, adherent layers.
- Jet temperatures reach tens of thousands of °C, enabling ceramics and high-melting alloys.
Typical applications
- Aerospace
- Medical devices
- Mechanical engineering

High Velocity Oxygen Fuel (HVOF)
We apply HVOF to extend component life. Fuel and oxygen combust in a chamber and expand through a converging–diverging nozzle to form a high-velocity jet.
Powder feedstock is injected, heated, and driven at supersonic particle velocities to build dense, low-porosity coatings with high bond strength.
Talk to our engineers about material selection and finish requirements.

Flame Spraying
Builds wear- and corrosion-resistant coatings or restores dimensions on steel and non-ferrous parts.
Wire or powder feedstock is melted in an oxy-fuel flame; compressed air and combustion gases atomize and propel molten droplets onto a prepared surface, where they solidify into a lamellar coating. Fuels include acetylene, propane, or hydrogen.
Typical applications
Cost-effective build-up and salvage, general corrosion protection, bond coats for further overlays.

Powder Flame Spraying
Powder is metered into an oxy-acetylene flame; the gas jet accelerates molten particles toward the substrate to form the coating.
Typical applications
Shaft wear sleeves and journals, industrial fans, and extruder screw rotors, where fast deposition and on-site refurbishment matter
