Thermal spraying

Do you have any questions?

Comparison of Thermal Spray Process Characteristics

Property
Flame Powder Spray
HVOF
Arc
Plasma (APS)
Cold spray
Detonation
Gase
Acetylene, propane, H₂, ethene
Propane, H₂, ethene
Air, N₂, Ar
Ar, N₂, H₂, He
Ar, He, N₂
Acetylene, O₂, N₂
Coating Materials
All
Metals Carbides
Metals
Oxides Metals
Ductile metals
All
Flame Temperature
[°C]
3160
2950
4000
< 20000
< 300
3160
Deposition Rate
[kg/h]
3 – 6
2 – 8
8 – 20
4 – 8
2 – 15
3 – 6
Particle velocity
[m/s]
< 50
< 700
ca. 150
< 450
< 1200
< 1000
Porosity
[%]
3 – 10
< 2
3 – 10
2 – 5
< 1
< 1
Adhesive tensile strength
[MPa]
14 – 21
48 – 62
28 – 41
21 – 34
50 – 70
70 – 100
Coating thickness range
[mm]
0.05 – 2.0
0.05 – 2.5
0.1 – 2.5
0.4 – 2.5
0,05 – 10
0.05 – 0.5
Hardness
[HRC]
< 35
< 45
< 40
< 40
< 70
< 70

Detonation Spraying

Advantages

Materials processed

  • Metals: copper, nickel, molybdenum, iron, others
  • Alloys: steels, nichrome, bronze, others
  • Oxides: aluminum oxide, chromium oxide, zirconium oxide, titanium oxide, others
  • Cermets: metal–ceramic composites with tungsten, chromium, and titanium carbides

The system coats complex geometries, including non‑standard shapes. The process is fully computer‑controlled for high process reliability and quality control.

Process cycle

– Gasgemisch wird ins Geschoß zugeführt (1,2,3)
– Beschichtungsmaterial (Pulver) wird ins Rohr eingebracht (4)
– Gasgemisch wird gezündet (5)
– Explosionsenergie schleudert das Gas Pulver Gemisch mit hoher Geschwindigkeit aus dem Rohr (6)
– Die Pulverteilchen werden beim Aufprall auf das Werkstück mit der Materialoberfläche verschmolzen und es entsteht eine Beschichtung mit einer Stärke bis 10 Mikron (7)
– Beschichtungsdicke wird je nach Anzahl der Schüsse entsprechend erhöht.

Typical applications

  • Aerospace
  • Medical devices
  • Mechanical engineering
Detonation Spritzen Porosität
Detonationspritzen Arbeitszyklen Foto

Atmospheric Plasma Spraying (APS)

We apply APS coatings to production parts.

How it works

  • A non-transferred DC arc in a water-cooled cathode–anode torch generates the plasma jet; process gases form the plume.
  • Powder feedstock is injected, melted in the jet, and propelled to the substrate to build dense, adherent layers.
  • Jet temperatures reach tens of thousands of °C, enabling ceramics and high-melting alloys.

Typical applications

  • Aerospace
  • Medical devices
  • Mechanical engineering
tsspritzen

High Velocity Oxygen Fuel (HVOF)

We apply HVOF to extend component life. Fuel and oxygen combust in a chamber and expand through a converging–diverging nozzle to form a high-velocity jet.

Powder feedstock is injected, heated, and driven at supersonic particle velocities to build dense, low-porosity coatings with high bond strength.

Talk to our engineers about material selection and finish requirements.

tsspritzen

Flame Spraying

Builds wear- and corrosion-resistant coatings or restores dimensions on steel and non-ferrous parts.

Wire or powder feedstock is melted in an oxy-fuel flame; compressed air and combustion gases atomize and propel molten droplets onto a prepared surface, where they solidify into a lamellar coating. Fuels include acetylene, propane, or hydrogen.

Typical applications

Cost-effective build-up and salvage, general corrosion protection, bond coats for further overlays.

tsspritzen

Powder Flame Spraying

Powder is metered into an oxy-acetylene flame; the gas jet accelerates molten particles toward the substrate to form the coating.

Typical applications

Shaft wear sleeves and journals, industrial fans, and extruder screw rotors, where fast deposition and on-site refurbishment matter

tsspritzen